
Software Security 5

CSE 40567 / 60567:
Computer Security

�124

Changes to the Syllabus:
See Course Website

�125

Changes in Course Logistics:
See my Email and Slack

We are now caught up on grading. If you
have questions on where you stand in the
class, contact Prof. Scheirer.

�126

Homework #5 has been released. It is due
4/2 at 11:59PM

�127

See Assignments Page on the course
website for details

Film Response Summary
�128

Format Strings Attack

�129

int func(char *user){
 fprintf(stderr, user);
}

Another common bug:

Problem: what if *user = "%s%s%s%s%s%s%s"?

• Most likely, program will crash: DoS.
• If not, program will print memory contents. Privacy impact?
• Full exploit using *user = "%n"

Correct use of fprintf(): fprintf(stdout, "%s", user);

Vulnerable functions

�130

Any function using a format string:

Printing:
printf(), fprintf(), sprintf(), …

vprintf(), vfprintf(), vsprintf(), …

Logging:
syslog(), err(), warn()

Writing a format strings exploit

�131

• Dumping arbitrary locations in memory:
– Walk up the stack until desired pointer is found.
– printf("%08x.%08x.%08x.%08x|%s|")

• Write to arbitrary locations in memory:
– printf("hello %n", &temp) // writes ‘6’ into memory

– printf("%08x.%08x.%08x.%08x.%n")

Race Conditions

• General category of bug (not always a security
problem)

• Affects systems where the output is dependent on the
sequence or timing of other uncontrollable events

• Becomes a bug when events do not happen in the
order the programmer intended

• Trouble for authentication:
• (1) Check for authentication, (2) State changes, (3) Act

on authentication

�132

Example: race condition exploit in
Starbucks gift cards

• Hole in online gift card
purchases surfaced in 2015

• Initiate two identical web
store transfers, trick the store
into recording both
‣ Normal use: Move money from

one card with $5 onto another,
for a total of $10 on one card

‣ With duplicate transfer: end up
with $15 on one card!

�133https://www.schneier.com/blog/archives/2015/05/race_condition_.html

Gift card BY-SA 2.0 401(K) 2012

�134

Helpful Tools for Writing Exploits

Metasploit (www.metasploit.com)

�135

Metasploit-Community BY-SA 3.0 Pradameinhoff

Tool for developing and executing exploit code against a
target machine

What does metasploit do?
• Provides tools that make debugging, offset hunting

and payload crafting easier
• Basic steps for exploiting a system via the framework:

1. Choose and configure an exploit (over 900 available in
the framework)

2. Check whether a target system is vulnerable

3. Choose and configure a payload

4. Encode payload to evade IDS

5. Execute the exploit

�136

Disassembling code

• Broad knowledge of assembly language is
essential for writing exploits
‣ Need to know where function calls exist in memory,

the internal execution flow of the program, and the
state of the heap / stack (eip / rip manipulation)

‣ Sometimes source code isn’t available; the binary
must be examined in these cases

�137

gdb

�138

(gdb) disass main
Dump of assembler code for function main:
 0x0000000000400624 <+0>: push %rbp
 0x0000000000400625 <+1>: mov %rsp,%rbp
 0x0000000000400628 <+4>: sub $0x30,%rsp
 0x000000000040062c <+8>: mov %edi,-0x24(%rbp)
 0x000000000040062f <+11>: mov %rsi,-0x30(%rbp)
 0x0000000000400633 <+15>: cmpl $0x4,-0x24(%rbp)
 0x0000000000400637 <+19>: je 0x40063e <main+26>
 0x0000000000400639 <+21>: jmpq 0x400731 <main+269>
 0x000000000040063e <+26>: mov $0x100,%edi
 0x0000000000400643 <+31>: callq 0x400520 <malloc@plt>
 0x0000000000400648 <+36>: mov %rax,-0x18(%rbp)
 0x000000000040064c <+40>: mov $0x40082c,%eax
 0x0000000000400651 <+45>: mov -0x18(%rbp),%rdx

IDA PRO

�139
https://youtu.be/vb18UVF4a_o

https://www.hex-rays.com/index.shtml

Fuzzing

• Black-box testing methodology

• Checks code modules for vulnerability to overflows

‣ Many are not obvious to visual inspection

• Two fuzzing strategies are typically deployed

1. Mutation-based fuzzers

2. Generation-based fuzzers

�140

CERT Basic Fuzzing Framework (BFF)

�141

https://github.com/CERTCC-Vulnerability-Analysis/certfuzz

Mutational fuzzer

https://youtu.be/kSnc7RI5ByA

w3af

�142

http://w3af.org/

Features:
• Daemons
• Fast HTTP Client
• Output Manager
• Fuzzing Engine
• Knowledge base

Image Credit: https://binarymist.files.wordpress.com/2014/01/w3af.png

skipfish

�143https://www.owasp.org/index.php/Automated_Audit_using_SKIPFISH

https://code.google.com/archive/p/skipfish/

