
Software Security 6

CSE 40567 / 60567:  
Computer Security

�144



Homework #5 has been released. It is due 
4/2 at 11:59PM 

 

�145

See Assignments Page on the course 
website for details



Protection Mechanisms 
Against Attack



Basic Strategies

• Check if known values in memory are being overwritten 

• Have the compiler perform bounds checking 

• Make it difficult for an attacker to find the necessary 
memory offsets 

• Explicitly mark regions of memory as being non-
executable

�147

Philosophical question: can’t we solve this with good 
coding practices?



Canaries

�148

Canary in a Coal Mine        BY-SA 2.0 Michael Sonnabend

https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf

1. Terminator canaries 
2. Random canaries 
3. XOR canaries

Three basic strategies:

Goal: detect that a return address has been altered 
before a function returns 

Implementation: place a known value between a 
buffer and control data on the stack



Canary word next to return address

�149

Frame 2 Frame 1

Top of Stack

canarylocal

s
f
p

r
e
t

s
t
r canarylocal

s
f
p

r
e
t

s
t
r



Random canaries

• Random canary string chosen at program invocation 

• Canary string is inserted into every stack frame 

• To bypass the canary, the attacker needs to know 
what it is ahead of time

�150

1. Canary is verified before returning from function 
2. If canary changed, exit program

Operation:

Potential for 
DoS attack

https://crypto.stanford.edu/cs155/lectures/02-ctrl-hijacking.pdf



Terminator canaries

�151

Use a known canary: {0, newline, linefeed, EOF} 

How do these characters help us?

• String functions will not copy beyond a terminator 
‣  e.g., strcpy() returns when copying a null character  

• Attacker can’t use string functions to corrupt the stack

Potential pitfall: the canary is known to the attacker



Random XOR canaries

�152

Variation on the theme of a random canary: also consider 
control portions of the stack 

Frame 1

canarylocal
s
f
p

r
e
t

s
t
r

⊕
Check that incorporates canary and ret

To attack, a matching xor result must be computed from a 
new canary and ret address. This requires knowledge of the 
original canary and canary algorithm.



Stackguard

• The three canary strategies are implemented as a 
patch to gcc 

• Minimal impact on performance 

‣ Apache: 8% slower  
• Caveat: canaries are not fool-proof 

‣ Some buffer overflow attacks will leave the 
canaries intact

�153



ProPolice (IBM)
• GCC 4.1: -fstack-protector and -fstack-protector-
all 

• Re-arrange stack layout to prevent pointer overflow

�154

String 
Growth

Stack 
Growth

args
ret addr

SFP
CANARY

local string buffers
local non-buffer variables

copy of pointer args

Pointers, but 
no arrays

Protects args and 
local pointers 
from a buffer 

overflow



-fstack-protector-strong (Google)

• Attempt to balance security and performance  

• Protects more functions than -fstack-protector 
‣ Which protects less than 2% of functions 

• But not as many as -fstack-protector-all 
•  Which protects everything, whether needed or not

�155

Standard for some OSs: OpenBSD, Hardened Gentoo 
Optional for others: Debian, FreeBSD



Visual Studio’s /GS switch

�156

Default compiler option since VS 2005

Combination of ProPolice and random canary 

If there is a “cookie” mismatch, the default behavior is to 
call _exit(3)

 Added to all functions in VS 2010

 ___security_cookie = canary



Function prolog and epilog

�157

FuncFon prolog:
sub esp, 8        // allocate 8 bytes for cookie  

mov eax, DWORD PTR ___security_cookie 

xor eax, esp     // xor cookie  with current esp 

mov DWORD PTR [esp+8], eax   // save in stack 

FuncFon epilog:
mov ecx, DWORD PTR [esp+8]  

xor ecx, esp 

call @__security_check_cookie@4  

add esp, 8  



/GS stack frame

�158

String 
Growth

Stack 
Growth

args
ret addr

SFP

CANARY
local string buffers

local non-buffer variables
copy of pointer args

Pointers, but 
no arrays

Canary protects 
ret-addr and 

exception 
handler frameexception handlers



/GS is not foolproof

�159

Evasion is possible: trigger exception before canary is checked

When an exception is thrown, the dispatcher walks up the 
exception list until the handler is found 
‣  If no handler is found, the default is used

After overflow: handler points to attacker’s code 
exception triggered ⟹ control hijack

next handler

0xffffffff 

next ptr to 
attack code next handler high 

mem

seh frame  seh frame  



Additional VS flags

/SAFESEH: linker flag 
‣ Linker produces a binary with a table of safe exception 

handlers 
‣ System will not jump to an exception handler not on list

�160



Additional VS flags

�161

/SEHOP: platform defense (since Vista SP1) 
‣ SEH attacks typically corrupt the “next” entry in the SEH 

list 
‣ /SEHOP adds a dummy record at top of SEH list 
‣ When exception occurs, the dispatcher walks up the list 

and verifies that the dummy record is there. If not, the 
process terminates.



If recompiling is not an option: 
Libsafe

�162

http://directory.fsf.org/wiki/Libsafe

• Dynamically loaded library 
• Intercepts calls to strcpy(dest, src)

Validates sufficient space in current stack frame:  
|frame-pointer – dest| > strlen(src) 

If so, does strcpy(). Otherwise terminates application. 

sfp ret-addr dest src buf sfp ret-addr
top 

of stack

Libsafe strcpy() main()



Libsafe is not foolproof

�163

sfp ret-addr dest src buf sfp ret-addr

high 
memory

Libsafe strcpy() main()

low 
memory

strcpy() can overwrite a pointer between buf and sfp. 



Compiler-based bounds checking

�164

Bounds Checking for C (http://www.doc.ic.ac.uk/~phjk/
BoundsChecking.html)
- Every pointer expression derives a new pointer from a 

unique original pointer. 
- Every pointer value is valid for just one allocated storage 

region. 
- Pointer arithmetic expressions are checked for validity 
- Implemented as patch to gcc



Compiler-based bounds checking

�165

SAFECode (http://safecode.cs.illinois.edu/)

- Array bounds checking  
- Loads and stores only access valid memory objects 
- Type safety for a subset of memory objects proven to be 

type-safe 
- Sound operational semantics in the face of dangling 

pointer errors 
- Optional dangling pointer detection (induces overhead)



�166

Compiler-based bounds checking

AddressSanitizer (https://github.com/google/sanitizers)
-  Compiler instrumentation module (currently, an LLVM pass)

Can find: 
Use after free (dangling pointer dereference), Heap buffer 
overflow, Stack buffer overflow, Global buffer overflow, Use 
after return, Initialization order bugs, Memory leaks

More on heap protection in a moment…



Tagging
• Tag the type of data in memory, and perform strong 

type checks during program execution 

• Two key tags: 

1. memory is non-executable 

2. memory is non-allocated

�167

An Intel Core i7 2600K processor        BY-SA 3.0 Eric Gaba

Implemented via software or 
hardware (far more difficult to 
thwart)



No eXecute (NX) bit

�168

Supported by Intel, AMD and ARM processors

NX
Software 
(working 
set index)

x64 hardware page table entry

Reserved Page Frame Number U P Cw Gl L D A Cd Wt O W V

63 62 52 51 40 39 12 11 10 9 8 7 6 5 4 3 2 1 0

valid
write

owner
write through

cache disabled
accessed

dirty
large page
global

copy on write

prototype PTE
reserved



W xor X (OpenBSD)

�169

Many bugs are exploitable because the address space 
contains memory that is both writeable and executable 
(permissions = W ∧ X)

A serious hinderance would be to ensure no pages have 
W ∧ X permission 

Implementation: use the NX bit to control permission at the 
hardware level on architectures that support it 

As of 2015, userland and kernel are protected for AMD64 



Address space layout randomization 
(ASLR)

• Randomize the memory space of a process in 
order to prevent an attacker from finding addresses 
or functions  
‣ Recall our discussions of why some buffer and heap 

overflow exploits are difficult to deploy in 2019  

• Not always present in an OS (e.g., Windows)

�170
http://securityetalii.es/2013/02/03/how-effective-is-aslr-on-linux-systems/



ASLR in Linux

�171

/proc/sys/kernel/randomize_va_space

0 – No randomization. Everything is static. 
1 – Conservative randomization. Shared libraries, stack, 
mmap(), VDSO and heap are randomized. 

2 – Full randomization. In addition to elements listed in the 
previous point, memory managed through brk() is also 
randomized.

Mode 2 enabled by default



How effective is ASLR?

• Limitations on the amount of entropy 
‣ A 32-bit system provides less entropy than a 64-bit 

system 
• Only partial protection is provided if binaries 

haven’t been compiled as a Position Independent 
Executable (PIE) 
‣ Even with ASLR mode 2, overflow attacks are still 

possible if executable or library has not been 
compiled with explicit protection 

�172https://media.blackhat.com/bh-us-10/whitepapers/Le/BlackHat-USA-2010-Le-Paper-Payload-already-inside-data-reuse-for-ROP-exploits-wp.pdf



Example of an executable that is not randomized 
despite randomize_va_space = 2

�173

#include <stdlib.h> 
#include <stdio.h> 
  
void* getEIP () { 
   return __builtin_return_address(0)-0x5; 
}; 
  
int main(int argc, char** argv){ 
   printf("EBP located at: %p\n",getEIP()); 
   return 0; 
} 



ASLR enabled, default compilation flags

�174

$ ldd ./foo 
 linux-vdso.so.1 =>  (0x00007ffe088d2000) 
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6    
                (0x00007f2ab1fdb000) 
 /lib64/ld-linux-x86-64.so.2 (0x00007f2ab23b9000) 
$ ldd ./foo 
 linux-vdso.so.1 =>  (0x00007ffe565c3000) 
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6  
               (0x00007f17f6b28000) 
 /lib64/ld-linux-x86-64.so.2 (0x00007f17f6f06000)

Libraries located at random locations: 

$ ./foo 
EBP located at: 0x400516 
$ ./foo 
EBP located at: 0x400516 
$ ./foo 
EBP located at: 0x400516

.text section is in the 
same place!



ASLR enabled, gcc -fPIE -pie

�175

$ ldd ./foo 
 linux-vdso.so.1 =>  (0x00007ffe1b6c6000) 
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6  

      (0x00007fb2cbb48000) 
 /lib64/ld-linux-x86-64.so.2 (0x00007fb2cc128000) 
$ ldd ./foo 
 linux-vdso.so.1 =>  (0x00007fff095d0000) 
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6  
                (0x00007fe7bd023000) 
 /lib64/ld-linux-x86-64.so.2 (0x00007fe7bd603000)

Libraries located at random locations: 

$ ./foo 
EBP located at: 0x7fb225eb474e 
$ ./foo 
EBP located at: 0x7f981c4bc74e 
$ ./foo 
EBP located at: 0x7fd252c4d74e

.text section is 
now randomized



Protecting the heap

• W xor X works for the heap as well 
‣ But some applications need an executable heap 

(e.g., JIT programs) 

• Pointguard
• AddressSanitizer

�176



Pointguard

�177https://www.usenix.org/legacy/event/sec03/tech/full_papers/cowan/cowan.pdf

Protects function pointers and setjmp buffers by encrypting 
them.

Pointguard Pointer Dereference

DataEncrypted 
pointer
0x7239 0x1234

CPU1. Fetch pointer 
Value

2. Pointer Decryption

0x1234
3. Access data referenced 

by pointer



Pointguard

�178

Pointguard Pointer Dereference Under Attack

DataCorrupted 
pointer

0x1340 0x1234

CPU1. Fetch pointer 
Value

2. Pointer Decryption

3. Access random data 
referenced by decryption 

of corrupted pointer

0x7239

0x9786



Address sanitizer

•  Run-time library which replaces the malloc() function. 

• Compile and link program using clang with the                        
-fsanitize=address switch. 

• To get a reasonable performance add -O1 or higher.  

‣ Increases processing time by 73% and memory usage by 
340% 

• To get nicer stack traces in error messages add -fno-
omit-frame-pointer

�179

https://github.com/google/sanitizers/wiki/AddressSanitizer



Address sanitizer

�180

int main(int argc, char **argv) { 
  int *array = new int[100]; 
  array[0] = 0; 
  int res = array[argc + 100];  // overflow 
  delete [] array; 
  return res; 
}

==6226== ERROR: AddressSanitizer: heap-buffer-overflow on address 
0x603e0001fdf4 at pc 0x417f8c bp 0x7fff64c0c010 sp 0x7fff64c0c008 
READ of size 4 at 0x603e0001fdf4 thread T0 
    #0 0x417f8b in main example_HeapOutOfBounds.cc:5 
    #1 0x7fa97c09376c (/lib/x86_64-linux-gnu/libc.so.6+0x2176c) 
    #2 0x417e54 (a.out+0x417e54) 
0x603e0001fdf4 is located 4 bytes to the right of 400-byte region 
[0x603e0001fc60,0x603e0001fdf0) 
allocated by thread T0 here: 
    #0 0x40d312 in operator new[](unsigned long) /home/kcc/llvm/
projects/compiler-rt/lib/asan/asan_new_delete.cc:46 
    #1 0x417f1c in main example_HeapOutOfBounds.cc:3

https://github.com/google/sanitizers/wiki/AddressSanitizerExampleHeapOutOfBounds



Mitigating integer overflows

• Sub-typing: define rules to express relationships between 
types, which can be used to validate the safety of a program  

‣ http://web.archive.org/web/20121010025025/http://
www.cs.cmu.edu/~dbrumley/pubs/integer-ndss-07.pdf 

• As-if infinitely ranged integers: does not break or inhibit 
existing optimizations 

‣ http://resources.sei.cmu.edu/library/asset-view.cfm?
assetid=9019 

• Easy solution: use a language with arbitrary-precision 
arithmetic and type safety 

• e.g., python

�181



Defenses are not perfect

• We’ve seen some good attacks, counter-measures, and 
counter-counter measures… 

‣ Security reduces to an arms race 

‣ Constraints of the von Neumann architecture

�182

Your best strategy: avoid problematic function calls and 
audit code before deployment


